\[\nabla_\mathbf{x}\log p(\mathbf{x}) = \sum_y p(y\mid\mathbf{x}) \nabla_\mathbf{x}\log p(\mathbf{x}\mid y)\]
\[\mathbf{\epsilon} = \sum_y p(y\mid\mathbf{x}_t)\mathbf{\epsilon}_\phi(\mathbf{x}_t,t,c_y)\]
\[\mathcal{L}_{DUSA}(\theta,\phi)=\mathbb{E}_{\mathbf{\epsilon}}\Big[\big\Vert \mathbf{\epsilon} - \sum_yp_\theta(y\mid\mathbf{x}_0)\mathbf{\epsilon}_\phi(\mathbf{x}_t,t,c_y) \big\Vert_2^2\Big]\]
@inproceedings{li2024exploring,
title={Exploring Structured Semantic Priors Underlying Diffusion Score for Test-time Adaptation},
author={Mingjia Li and Shuang Li and Tongrui Su and Longhui Yuan and Jian Liang and Wei Li},
booktitle={The Thirty-eighth Annual Conference on Neural Information Processing Systems},
year={2024},
url={https://openreview.net/forum?id=c7m1HahBNf}
}